Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.831
Filtrar
1.
Open Vet J ; 14(1): 512-524, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38633152

RESUMO

Background: Catadromous fishes have well-developed elongated olfactory organs with numerous lamellae and different types of receptor neurons related to their breeding migration. Aim: The current study showed how the olfactory system adapted to the catadromous life. Our work declared the need of the migratory fishes for the sense of smell that is exhibited by a higher number of the olfactory lamellae and the receptor neuron verification in the olfactory epithelium. Methods: Ten specimens of fully grown, but pre-matured, silver eels of Anguilla vulgaris were captured at the outlet of Edco Lake, overlooking the Mediterranean Sea, east of Alexandria. Olfactory rosettes were dissected and fixed for scanning electron microscope (SEM) and transmission electron microscope (TEM). Results: Our study gave a morphological description of the olfactory system of A. vulgaris. At the ultrastructural level using SEM and TEM, one olfactory rosette was provided with 90-100 flat radial olfactory lamellae. The nasal configuration allowed water to enter and exit, transferring odorant molecules to olfactory receptor cells which comprise long cylindrical ciliated and microvillous receptors as well as rod-tipped cells. These cells are bipolar neurons with upward dendritic knobs. The olfactory epithelia also include crypt receptor cells. Interestingly, the olfactory neurons are delimited by nonsensory supporting cells, including long motile kinocilia and sustentacular supporting cells beside mucus secretory goblet cells and ionocytes or labyrinth cells that contribute to the olfaction process. Conclusion: Olfaction is crucial in all vertebrates, including fishes as it involves reproduction, parental, feeding, defensive, schooling, and migration behaviors. Here, A. vulgaris is an excellent model for catadromous fishes. It has a well-developed olfactory organ to cope with the dramatic climate change, habitat loss, water pollution, and altered ocean currents effect during their catadromous life for reproduction.


Assuntos
Anguilla , Animais , Microscopia Eletrônica de Varredura/veterinária , Mucosa Olfatória/ultraestrutura
2.
Nat Commun ; 15(1): 3360, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38637611

RESUMO

The mammalian olfactory system detects and discriminates between millions of odorants to elicit appropriate behavioral responses. While much has been learned about how olfactory sensory neurons detect odorants and signal their presence, how specific innate, unlearned behaviors are initiated in response to ethologically relevant odors remains poorly understood. Here, we show that the 4-transmembrane protein CD20, also known as MS4A1, is expressed in a previously uncharacterized subpopulation of olfactory sensory neurons in the main olfactory epithelium of the murine nasal cavity and functions as a mammalian olfactory receptor that recognizes compounds produced by mouse predators. While wildtype mice avoid these predator odorants, mice genetically deleted of CD20 do not appropriately respond. Together, this work reveals a CD20-mediated odor-sensing mechanism in the mammalian olfactory system that triggers innate behaviors critical for organismal survival.


Assuntos
Neurônios Receptores Olfatórios , Receptores Odorantes , Animais , Camundongos , Aprendizagem/fisiologia , Mamíferos/metabolismo , Odorantes , Mucosa Olfatória/metabolismo , Neurônios Receptores Olfatórios/metabolismo , Receptores Odorantes/genética , Receptores Odorantes/metabolismo , Olfato/fisiologia , Antígenos CD20/metabolismo
3.
Genesis ; 62(2): e23594, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38590146

RESUMO

During development of the nervous system, neurons connect to one another in a precisely organized manner. Sensory systems provide a good example of this organization, whereby the composition of the outside world is represented in the brain by neuronal maps. Establishing correct patterns of neural circuitry is crucial, as inaccurate map formation can lead to severe disruptions in sensory processing. In rodents, olfactory stimuli modulate a wide variety of behaviors essential for survival. The formation of the olfactory glomerular map is dependent on molecular cues that guide olfactory receptor neuron axons to broad regions of the olfactory bulb and on cell adhesion molecules that promote axonal sorting into specific synaptic units in this structure. Here, we demonstrate that the cell adhesion molecule Amigo1 is expressed in a subpopulation of olfactory receptor neurons, and we investigate its role in the precise targeting of olfactory receptor neuron axons to the olfactory bulb using a genetic loss-of-function approach in mice. While ablation of Amigo1 did not lead to alterations in olfactory sensory neuron axonal targeting, our experiments revealed that the presence of a neomycin resistance selection cassette in the Amigo1 locus can lead to off-target effects that are not due to loss of Amigo1 expression, including unexpected altered gene expression in olfactory receptor neurons and reduced glomerular size in the ventral region of the olfactory bulb. Our results demonstrate that insertion of a neomycin selection cassette into the mouse genome can have specific deleterious effects on the development of the olfactory system and highlight the importance of removing antibiotic resistance cassettes from genetic loss-of-function mouse models when studying olfactory system development.


Assuntos
Neurônios Receptores Olfatórios , Animais , Camundongos , Neurônios Receptores Olfatórios/metabolismo , Mucosa Olfatória , Bulbo Olfatório , Axônios/metabolismo , Expressão Gênica
4.
Dev Neurobiol ; 84(2): 59-73, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38439531

RESUMO

In contrast to other S100 protein members, the function of S100 calcium-binding protein Z (S100Z) remains largely uncharacterized. It is expressed in the olfactory epithelium of fish, and it is closely associated with the vomeronasal organ (VNO) in mammals. In this study, we analyzed the expression pattern of S100Z in the olfactory system of the anuran amphibian Xenopus laevis. Using immunohistochemistry in whole mount and slice preparations of the larval olfactory system, we found exclusive S100Z expression in a subpopulation of olfactory receptor neurons (ORNs) of the main olfactory epithelium (MOE). S100Z expression was not co-localized with TP63 and cytokeratin type II, ruling out basal cell and supporting cell identity. The distribution of S100Z-expressing ORNs was laterally biased, and their average number was significantly increased in the lateral half of the olfactory epithelium. The axons of S100Z-positive neurons projected exclusively into the lateral and intermediate glomerular clusters of the main olfactory bulb (OB). Even after metamorphic restructuring of the olfactory system, S100Z expression was restricted to a neuronal subpopulation of the MOE, which was then located in the newly formed middle cavity. An axonal projection into the ventro-lateral OB persisted also in postmetamorphic frogs. In summary, S100Z is exclusively associated with the main olfactory system in the amphibian Xenopus and not with the VNO as in mammals, despite the presence of a separate accessory olfactory system in both classes.


Assuntos
Neurônios Receptores Olfatórios , Órgão Vomeronasal , Animais , Neurônios Receptores Olfatórios/metabolismo , Xenopus laevis/metabolismo , Mucosa Olfatória , Bulbo Olfatório/metabolismo , Órgão Vomeronasal/metabolismo , Proteínas S100/metabolismo , Mamíferos/metabolismo
5.
Curr Allergy Asthma Rep ; 24(4): 211-219, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38492160

RESUMO

PURPOSE OF REVIEW: Neurogenesis occurring in the olfactory epithelium is critical to continuously replace olfactory neurons to maintain olfactory function, but is impaired during chronic type 2 and non-type 2 inflammation of the upper airways. In this review, we describe the neurobiology of olfaction and the olfactory alterations in chronic rhinosinusitis with nasal polyps (type 2 inflammation) and post-viral acute rhinosinusitis (non-type 2 inflammation), highlighting the role of immune response attenuating olfactory neurogenesis as a possibly mechanism for the loss of smell in these diseases. RECENT FINDINGS: Several studies have provided relevant insights into the role of basal stem cells as direct participants in the progression of chronic inflammation identifying a functional switch away from a neuro-regenerative phenotype to one contributing to immune defense, a process that induces a deficient replacement of olfactory neurons. The interaction between olfactory stem cells and immune system might critically underlie ongoing loss of smell in type 2 and non-type 2 inflammatory upper airway diseases. In this review, we describe the neurobiology of olfaction and the olfactory alterations in type 2 and non-type 2 inflammatory upper airway diseases, highlighting the role of immune response attenuating olfactory neurogenesis, as a possibly mechanism for the lack of loss of smell recovery.


Assuntos
Transtornos do Olfato , Rinite , Sinusite , Humanos , Olfato/fisiologia , Anosmia/metabolismo , Inflamação/metabolismo , Mucosa Olfatória/metabolismo , Doença Crônica
6.
Glia ; 72(6): 1183-1200, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38477581

RESUMO

Barrier-forming olfactory glia cells, termed sustentacular cells, play important roles for immune defense of the olfactory mucosa, for example as entry sites for SARS-CoV-2 and subsequent development of inflammation-induced smell loss. Here we demonstrate that sustentacular cells express ACKR3, a chemokine receptor that functions both as a scavenger of the chemokine CXCL12 and as an activator of alternative signaling pathways. Differential gene expression analysis of bulk RNA sequencing data obtained from WT and ACKR3 conditional knockout mice revealed upregulation of genes involved in immune defense. To map the regulated genes to the different cell types of the olfactory mucosa, we employed biocomputational methods utilizing a single-cell reference atlas. Transcriptome analysis, PCR and immunofluorescence identified up-regulation of NF-κB-related genes, known to amplify inflammatory signaling and to facilitate leukocyte transmigration, in the gliogenic lineage. Accordingly, we found a marked increase in leukocyte-expressed genes and confirmed leukocyte infiltration into the olfactory mucosa. In addition, lack of ACKR3 led to enhanced expression and secretion of early mediators of immune defense by Bowman's glands. As a result, the number of apoptotic cells in the epithelium was decreased. In conclusion, our research underlines the importance of sustentacular cells in immune defense of the olfactory mucosa. Moreover, it identifies ACKR3, a druggable G protein-coupled receptor, as a promising target for modulation of inflammation-associated anosmia.


Assuntos
Inflamação , Mucosa Olfatória , Animais , Camundongos , Quimiocina CXCL12/metabolismo , Perfilação da Expressão Gênica , Inflamação/metabolismo , Neuroglia/metabolismo , Mucosa Olfatória/metabolismo
7.
Zoology (Jena) ; 163: 126156, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38422714

RESUMO

Osteoglossiformes (bonytongue fishes) possess many morphological specializations associated with functions such as airbreathing, feeding, and electroreception. The olfactory organ also varies among species, notably in the family Osteoglossidae. Herein, we describe the olfactory organ of an osteoglossid, Heterotis niloticus, to compare it with the olfactory organs of other osteoglossiforms. We demonstrate the presence of an olfactory rosette within the olfactory chamber. This structure consists of a short median raphe surrounded by olfactory lamellae, which possess dorsal lamellar processes. On the surface of the olfactory lamellae, there are secondary lamellae formed by the olfactory epithelium. Within the olfactory epithelium, two zones can be distinguished: parallel brands of sensory cells located in the cavities between the secondary lamellae and a nonsensory area covering the remaining part of the olfactory lamellae. The olfactory epithelium is formed by ciliated and microvillus olfactory sensory neurons, supporting cells, goblet cells, basal cells and ciliated nonsensory cells. Additionally, rodlet cells were observed. The results confirm large variability in terms of the olfactory organ of Osteoglossiformes, particularly of Osteoglossidae, and support the secondary lamellae evolution hypothesis within this family.


Assuntos
Peixes , Mucosa Olfatória , Animais , Peixes/anatomia & histologia , Mucosa Olfatória/anatomia & histologia , Mucosa Olfatória/fisiologia , Olfato/fisiologia , Células Caliciformes
8.
Cell Tissue Res ; 396(1): 95-102, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38347202

RESUMO

The odor space of aquatic organisms is by necessity quite different from that of air-breathing animals. The recognized odor classes in teleost fish include amino acids, bile acids, reproductive hormones, nucleotides, and a limited number of polyamines. Conversely, a significant portion of the fish olfactory receptor repertoire is composed of trace amine-associated receptors, generally assumed to be responsible for detecting amines. Zebrafish possess over one hundred of these receptors, but the responses of olfactory sensory neurons to amines have not been known so far. Here we examined odor responses of zebrafish olfactory epithelial explants at the cellular level, employing calcium imaging. We report that amines elicit strong responses in olfactory sensory neurons, with a time course characteristically different from that of ATP-responsive (basal) cells. A quantitative analysis of the laminar height distribution shows amine-responsive cells undistinguishable from ciliated neurons positive for olfactory marker protein. This distribution is significantly different from those measured for microvillous neurons positive for transient receptor potential channel 2 and basal cells positive for proliferating cell nuclear antigen. Our results suggest amines as an important odor class for teleost fish.


Assuntos
Neurônios Receptores Olfatórios , Receptores Odorantes , Animais , Peixe-Zebra/metabolismo , Cálcio/metabolismo , Aminas/metabolismo , Odorantes , Mucosa Olfatória/metabolismo , Neurônios Receptores Olfatórios/metabolismo , Receptores Odorantes/metabolismo
9.
PLoS One ; 19(2): e0298640, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38416730

RESUMO

OBJECTIVE: The development of treatments that promote the regenerative capacity of the olfactory epithelium (OE) is desirable. This study aimed to evaluate the effects of intranasal administration of concentrated growth factors (CGFs) in a rat model of olfactory dysfunction. STUDY DESIGN: Animal study. METHODS: Nineteen male rats were used. Fourteen olfactory dysfunction models were created by intraperitoneal administration of 3-methylindole. We randomly divided the rats from the olfactory dysfunction model after 1 week into the CGF or saline group; CGFs were administered to seven animals and saline to seven animals. Behavioral assessments using the avoidance test were conducted until day 28 after CGF/saline administration. On day 28, histological evaluation was conducted to determine olfactory epithelial thickness and the olfactory marker protein (OMP)-positive cell count. Five animals were intraperitoneally injected with saline as the control group. RESULTS: The avoidance rate remained decreased until 28 days after CGF/saline administration, and there was no significant difference between the two groups. Olfactory epithelial thicknesses on day 28 were 38.64 ± 3.17 µm and 32.84 ± 4.50 µm in the CGF and saline groups, respectively. OE thickness was significantly thicker in the CGF group than in the saline group (P = 0.013). The numbers of OMP-positive cells were 40.29 ± 9.77/1.0 × 104 µm2 and 31.00 ± 3.69/1.0 × 104 µm2 in the CGF and saline groups, respectively. The number of OMP+ cells in the CGF group was significantly increased compared with that in the saline group (P = 0.009). Both groups showed no improvement compared with the control group (OE thickness: 54.08 ± 3.36 µm; OMP+ cell count: 56.90 ± 9.91/1.0 × 104 µm2). CONCLUSIONS: The CGF group showed improved olfactory epithelial thickness and OMP-positive cell numbers compared with that in the saline group.


Assuntos
Transtornos do Olfato , Mucosa Olfatória , Ratos , Animais , Masculino , Administração Intranasal , Mucosa Olfatória/metabolismo , Olfato , Proteína de Marcador Olfatório/metabolismo , Transtornos do Olfato/tratamento farmacológico , Regeneração
10.
J Integr Neurosci ; 23(2): 27, 2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38419438

RESUMO

BACKGROUND: Olfactory impairment has been reported in patients with depression and in rodent models of depression. Olfactory epithelium (OE) is the only peripheral neural tissue connected to the brain that has the potential for self-renewal. We hypothesized the olfactory deficit during depression may be related to the dysfunction of OE progenitor cells. The aim of the present study was therefore to evaluate the expansion and neuronal differentiation potency of cultured OE progenitor cells obtained from a rat model of depression. METHODS: Rats were exposed to chronic unpredictable mild stress procedures to establish a depressive-like state. Depressive-like behavior and olfactory sensing function were then evaluated and compared with control rats. Primary OE progenitor cells were cultured in vitro. The proliferation potency and survival of OE progenitor cells were assessed by 5-Ethynyl-2'-deoxyuridine staining and Cell Counting Kit-8 (CCK8), respectively, while cellular apoptosis was measured by flow cytometry. The neuronal differentiation potency of OE progenitor cells was evaluated by measurement of the protein and mRNA level of ß-3 tubulin, a marker of neural cells. mRNA expression associated with neural stemness was examined by quantitative reverse transcription polymerase chain reaction (RT-PCR). RESULTS: Depressive-like rats showed decreased olfactory function. OE progenitor cells from depressive-like rats showed reduced cell proliferation/survival and neuronal differentiation potency. Moreover, OE progenitor cells from depressive-like rats showed decreased expression of mRNA related to neural stemness. CONCLUSIONS: These results indicate the impaired function of OE progenitor cells may contribute to the olfactory deficit observed during depression. The OE may therefore provide a window for the study of depression.


Assuntos
Depressão , Mucosa Olfatória , Humanos , Ratos , Animais , Mucosa Olfatória/metabolismo , Neurônios/metabolismo , Células-Tronco/metabolismo , RNA Mensageiro/metabolismo , Células Cultivadas
11.
Sci Immunol ; 9(92): eabq4341, 2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38306414

RESUMO

The olfactory neuroepithelium serves as a sensory organ for odors and forms part of the nasal mucosal barrier. Olfactory sensory neurons are surrounded and supported by epithelial cells. Among them, microvillous cells (MVCs) are strategically positioned at the apical surface, but their specific functions are enigmatic, and their relationship to the other specialized epithelial cells is unclear. Here, we establish that the family of MVCs comprises tuft cells and ionocytes in both mice and humans. Integrating analysis of the respiratory and olfactory epithelia, we define the distinct receptor expression of TRPM5+ tuft-MVCs compared with Gɑ-gustducinhigh respiratory tuft cells and characterize a previously undescribed population of glandular DCLK1+ tuft cells. To establish how allergen sensing by tuft-MVCs might direct olfactory mucosal responses, we used an integrated single-cell transcriptional and protein analysis. Inhalation of Alternaria induced mucosal epithelial effector molecules including Chil4 and a distinct pathway leading to proliferation of the quiescent olfactory horizontal basal stem cell (HBC) pool, both triggered in the absence of olfactory apoptosis. Alternaria- and ATP-elicited HBC proliferation was dependent on TRPM5+ tuft-MVCs, identifying these specialized epithelial cells as regulators of olfactory stem cell responses. Together, our data provide high-resolution characterization of nasal tuft cell heterogeneity and identify a function of TRPM5+ tuft-MVCs in directing the olfactory mucosal response to allergens.


Assuntos
Mucosa Olfatória , 60419 , Humanos , Camundongos , Animais , Mucosa Olfatória/metabolismo , Mucosa Nasal , Células Epiteliais/metabolismo , Proliferação de Células , Quinases Semelhantes a Duplacortina
12.
STAR Protoc ; 5(1): 102831, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38277268

RESUMO

We present a protocol for the rapid postmortem bedside procurement of selected tissue samples using an endoscopic endonasal surgical technique that we adapted from skull base surgery. We describe steps for the postmortem collection of blood, cerebrospinal fluid, a nasopharyngeal swab, and tissue samples; the clean-up procedure; and the initial processing and storage of the samples. This protocol was validated with tissue samples procured postmortem from COVID-19 patients and can be applied in another emerging infectious disease. For complete details on the use and execution of this protocol, please refer to Khan et al. (2021)1 and Khan et al. (2022).2.


Assuntos
Procedimentos de Cirurgia Plástica , Humanos , Base do Crânio/cirurgia , Endoscopia/métodos , Mucosa Olfatória/cirurgia , Lobo Frontal/cirurgia
13.
Artigo em Inglês | MEDLINE | ID: mdl-38218111

RESUMO

The amphibian olfactory system is highly distinct between aquatic tadpole and terrestrial frog life stages and therefore must remodel extensively during thyroid hormone (TH)-dependent metamorphosis. Developmentally appropriate functioning of the olfactory epithelium is critical for survival. Previous studies in other Rana [Lithobates] catesbeiana premetamorphic tadpole tissues showed that initiation of TH-induced metamorphosis can be uncoupled from execution of TH-dependent programs by holding tadpoles in the cold rather than at warmer permissive temperatures. TH-exposed tadpoles at the nonpermissive (5 °C) temperature do not undergo metamorphosis but retain a "molecular memory" of TH exposure that is activated upon shift to a permissive warm temperature. Herein, premetamorphic tadpoles were held at permissive (24 °C) or nonpermissive (5 °C) temperatures and injected with 10 pmoles/g body weight 3,5,3'-triiodothyronine (T3) or solvent control. Olfactory epithelium was collected at 48 h post-injection. RNA-sequencing (RNA-Seq) and reverse transcriptase quantitative real-time polymerase chain reaction (RT-qPCR) analyses generated differentially expressed transcript profiles of 4328 and 54 contigs for permissive and nonpermissive temperatures, respectively. Translation, rRNA, spliceosome, and proteolytic processes gene ontologies were enriched by T3 treatment at 24 °C while negative regulation of cell proliferation was enriched by T3 at 5 °C. Of note, as found in other tissues, TH-induced basic leucine zipper-containing protein-encoding transcript, thibz, was significantly induced by T3 at both temperatures, suggesting a role in the establishment of molecular memory in the olfactory epithelium. The current study provides critical insights by deconstructing early TH-induced induction of postembryonic processes that may be targets for disruption by environmental contaminants.


Assuntos
Ranidae , Hormônios Tireóideos , Animais , Temperatura , Larva/genética , Rana catesbeiana/genética , Hormônios Tireóideos/farmacologia , Mucosa Olfatória , Metamorfose Biológica/genética , Tri-Iodotironina/farmacologia
14.
J Neuroimmunol ; 387: 578288, 2024 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-38237527

RESUMO

We examined the histopathological changes in the olfactory mucosa of cynomolgus and rhesus macaque models of SARS-CoV-2 infection. SARS-CoV-2 infection induced severe inflammatory changes in the olfactory mucosa. A major histocompatibility complex (MHC) class II molecule, HLA-DR was expressed in macrophage and supporting cells, and melanocytes were increased in olfactory mucosa. Supporting cells and olfactory neurons were infected, and SARS-CoV-2 N protein was detected in the axons of olfactory neurons and in olfactory bulbs. Viral RNA was detected in olfactory bulbs and brain tissues. The olfactory epithelium-olfactory bulb pathway may be important as a route for intracranial infection by SARS-CoV-2.


Assuntos
COVID-19 , Bulbo Olfatório , Animais , Bulbo Olfatório/metabolismo , Bulbo Olfatório/patologia , SARS-CoV-2 , COVID-19/patologia , Macaca mulatta , Mucosa Olfatória/metabolismo , Mucosa Olfatória/patologia , Inflamação/metabolismo , Macaca fascicularis
15.
BMC Pulm Med ; 24(1): 14, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38178092

RESUMO

BACKGROUND: Pulmonary fibrosis (PF) is a progressive fibrosing interstitial pneumonia that leads to respiratory failure and other complications, which is ultimately fatal. Mesenchymal stem cells (MSCs) transplant is a promising strategy to solve this problem, while the procurement of MSCs from the patient for autotransplant remains a challenge. METHODS: Here, we presented olfactory mucosa mesenchymal stem cells (OM-MSCs) from mouse turbinate and determined the preventing efficacy of allotransplant for PF. We demonstrated the antiinflammation and immunomodulatory effects of OM-MSCs. Flow cytometric analysis was used to verify the effect of OM-MSCs on monocyte-derived macrophage populations in the lung. RESULTS: Administration of OM-MSCs reduces inflammation, attenuates the matrix metallopeptidase 13 (MMP13) expression level and restores the bleomycin (BLM)-induced pulmonary fibrosis by assessing the architecture of lung, collagen type I; (COL1A1), actin alpha 2, smooth muscle, aorta (ACTA2/α-SMA) and hydroxyproline. This therapeutic effect of OM-MSCs was related to the increase in the ratio of nonclassical monocytes to proinflammatory monocytes in the lung. CONCLUSIONS: This study suggests that transplant of OM-MSCs represents an effective and safe treatment for PF.


Assuntos
Células-Tronco Mesenquimais , Fibrose Pulmonar , Humanos , Camundongos , Animais , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/terapia , Fibrose Pulmonar/metabolismo , Inflamação/metabolismo , Células-Tronco Mesenquimais/metabolismo , Imunomodulação , Mucosa Olfatória/metabolismo
16.
PLoS Biol ; 22(1): e3002468, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38271330

RESUMO

In vertebrates, olfactory receptors localize on multiple cilia elaborated on dendritic knobs of olfactory sensory neurons (OSNs). Although olfactory cilia dysfunction can cause anosmia, how their differentiation is programmed at the transcriptional level has remained largely unexplored. We discovered in zebrafish and mice that Foxj1, a forkhead domain-containing transcription factor traditionally linked with motile cilia biogenesis, is expressed in OSNs and required for olfactory epithelium (OE) formation. In keeping with the immotile nature of olfactory cilia, we observed that ciliary motility genes are repressed in zebrafish, mouse, and human OSNs. Strikingly, we also found that besides ciliogenesis, Foxj1 controls the differentiation of the OSNs themselves by regulating their cell type-specific gene expression, such as that of olfactory marker protein (omp) involved in odor-evoked signal transduction. In line with this, response to bile acids, odors detected by OMP-positive OSNs, was significantly diminished in foxj1 mutant zebrafish. Taken together, our findings establish how the canonical Foxj1-mediated motile ciliogenic transcriptional program has been repurposed for the biogenesis of immotile olfactory cilia, as well as for the development of the OSNs.


Assuntos
Neurônios Receptores Olfatórios , Peixe-Zebra , Animais , Humanos , Camundongos , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Cílios/metabolismo , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Mucosa Olfatória
17.
Artigo em Inglês | MEDLINE | ID: mdl-38056556

RESUMO

Detection of environmental cues is essential for all vertebrates and is typically established by the olfactory epithelium and olfactory sensory neurons (OSNs). In fishes, microvillous and ciliated OSNs are the principal types, typically detecting amino acids and bile salts, respectively. Activation of OSN receptors by specific ligands initiate downstream signal processing often leading to behavioural responses. In this study we used electrophysiological and behavioural techniques to evaluate olfactory detection and behaviour in juvenile lake sturgeon Acipenser fulvescens in response to hatchery- and natural dietary cues. We hypothesized that electro-olfactogram (EOG) and behavioural responses would be dependent on diet type. We predicted that inhibition of the phospholipase C/inositol 1,4,5-triphosphate (PLC/IP3) secondary transduction pathway would reduce EOG responses to dietary cues and, inhibition of the adenylyl cyclase/adenosine 3,5-cyclic monophosphate (cAMP) pathway, would have no effect. Furthermore, we predicted a strong EOG response would be manifested in a change in behaviour. We observed that both the PLC/IP3 and cAMP pathways were significantly involved in the detection of dietary cues. However, EOG responses did not manifest to behavioural responses, although the foraging activity to the hatchery cue was significantly greater compared to the control. Our results support the notion that lake sturgeon raised in a hatchery and fed a commercial pelleted diet may become accustomed to it prior to release into the wild. Further, this study suggests that, in conservation aquaculture settings, lake sturgeon should be exposed to natural dietary cues prior to release as one strategy to promote food recognition.


Assuntos
Sinais (Psicologia) , Neurônios Receptores Olfatórios , Animais , Peixes/fisiologia , Mucosa Olfatória , Dieta/veterinária
18.
Cell Mol Immunol ; 21(2): 134-143, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38143247

RESUMO

Numerous pathogens can infect the olfactory tract, yet the pandemic caused by SARS-CoV-2 has strongly emphasized the importance of the olfactory mucosa as an immune barrier. Situated in the nasal passages, the olfactory mucosa is directly exposed to the environment to sense airborne odorants; however, this also means it can serve as a direct route of entry from the outside world into the brain. As a result, olfactotropic infections can have serious consequences, including dysfunction of the olfactory system, CNS invasion, dissemination to the lower respiratory tract, and transmission between individuals. Recent research has shown that a distinctive immune response is needed to protect this neuronal and mucosal tissue. A better understanding of innate, adaptive, and structural immune barriers in the olfactory mucosa is needed to develop effective therapeutics and vaccines against olfactotropic microbes such as SARS-CoV-2. Here, we summarize the ramifications of SARS-CoV-2 infection of the olfactory mucosa, review the subsequent immune response, and discuss important areas of future research for olfactory immunity to infectious disease.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Mucosa Olfatória , Encéfalo , Imunidade
19.
J Neuroinflammation ; 20(1): 299, 2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-38098019

RESUMO

BACKGROUND: The neurological effects of the coronavirus disease of 2019 (COVID-19) raise concerns about potential long-term consequences, such as an increased risk of Alzheimer's disease (AD). Neuroinflammation and other AD-associated pathologies are also suggested to increase the risk of serious SARS-CoV-2 infection. Anosmia is a common neurological symptom reported in COVID-19 and in early AD. The olfactory mucosa (OM) is important for the perception of smell and a proposed site of viral entry to the brain. However, little is known about SARS-CoV-2 infection at the OM of individuals with AD. METHODS: To address this gap, we established a 3D in vitro model of the OM from primary cells derived from cognitively healthy and AD individuals. We cultured the cells at the air-liquid interface (ALI) to study SARS-CoV-2 infection under controlled experimental conditions. Primary OM cells in ALI expressed angiotensin-converting enzyme 2 (ACE-2), neuropilin-1 (NRP-1), and several other known SARS-CoV-2 receptor and were highly vulnerable to infection. Infection was determined by secreted viral RNA content and confirmed with SARS-CoV-2 nucleocapsid protein (NP) in the infected cells by immunocytochemistry. Differential responses of healthy and AD individuals-derived OM cells to SARS-CoV-2 were determined by RNA sequencing. RESULTS: Results indicate that cells derived from cognitively healthy donors and individuals with AD do not differ in susceptibility to infection with the wild-type SARS-CoV-2 virus. However, transcriptomic signatures in cells from individuals with AD are highly distinct. Specifically, the cells from AD patients that were infected with the virus showed increased levels of oxidative stress, desensitized inflammation and immune responses, and alterations to genes associated with olfaction. These results imply that individuals with AD may be at a greater risk of experiencing severe outcomes from the infection, potentially driven by pre-existing neuroinflammation. CONCLUSIONS: The study sheds light on the interplay between AD pathology and SARS-CoV-2 infection. Altered transcriptomic signatures in AD cells may contribute to unique symptoms and a more severe disease course, with a notable involvement of neuroinflammation. Furthermore, the research emphasizes the need for targeted interventions to enhance outcomes for AD patients with viral infection. The study is crucial to better comprehend the relationship between AD, COVID-19, and anosmia. It highlights the importance of ongoing research to develop more effective treatments for those at high risk of severe SARS-CoV-2 infection.


Assuntos
Doença de Alzheimer , COVID-19 , Humanos , SARS-CoV-2 , Anosmia/metabolismo , Doenças Neuroinflamatórias , Doença de Alzheimer/metabolismo , Mucosa Olfatória/metabolismo
20.
Biomolecules ; 13(12)2023 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-38136633

RESUMO

The olfactory neuroepithelium (OE) is one of the few neuronal tissues where environmental pathogens can gain direct access. Despite this vulnerable arrangement, little is known about the protective mechanisms in the OE to prevent viral infection and its antiviral responses. We systematically investigated acute responses in the olfactory mucosa upon exposure to vesicular stomatitis virus (VSV) via RNA-seq. VSVs were nasally inoculated into C57BL/6 mice. Olfactory mucosae were dissected for gene expression analysis at different time points after viral inoculation. Interferon functions were determined by comparing the viral load in interferon receptor knockout (Ifnar1-/- and Ifnlr1-/-) with wildtype OE. Antiviral responses were observed as early as 24 h after viral exposure in the olfactory mucosa. The rapidly upregulated transcripts observed included specific type I as well as type III interferons (Ifn) and interferon-stimulated genes. Genetic analyses demonstrated that both type I and type III IFN signaling are required for the suppression of viral replication in the olfactory mucosa. Exogenous IFN application effectively blocks viral replication in the OE. These findings reveal that the OE possesses an innate ability to suppress viral infection. Type I and type III IFNs have prominent roles in OE antiviral functions.


Assuntos
Interferon lambda , Viroses , Animais , Camundongos , Camundongos Endogâmicos C57BL , Interferons , Mucosa Olfatória , Replicação Viral , Antivirais/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...